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Abstract
This work serves as a brief introduction to the theory of spin waves.

We recall basic ideas and properties of spin algebra and spin states.
We briefly discuss the connection between spin algebra and theory
of representations of Lie algebras. We introduce the concept of spin
waves and discuss its basic properties in the context of the Heisenberg
ferromagnetic systems.

Introduction
In this section, we will recall basic facts and formulas governing

spin algebra. Since these topics are deeply discussed in every quantum
mechanics handbook (see, for example, [2]), we will restrict ourselves
mainly to listing the most important equations and definitions and
brief comments, just for further reference. If the reader knows these
topics and formulas, she/he is encouraged to skip this section.
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The spin

It is a well known fact that there is a quantum number S ∈ N
2
∪ {0}

associated with each quantum particle. This number is called a spin of
that particle. The spin itself can be intuitively viewed as an "intrinsic"
angular momentum, but one has to be careful with thinking of a spin in
that way, mainly because it has nothing to do with rotation. Neverthe-
less, algebra of spin possesses similar properties as the algebra of orbital
angular momentum in quantum mechanics, with slight exception that
spin quantum number can have half-integer value. Existence of spin
introduces the additional degrees of freedom of a particle, and leads
to various interesting physical phenomena. Particles with half-integer
spin are called fermions, while these with integer spin - bosons. Table
1 presents the list of elementary particles together with their spin S.
Non-elementary particles, like protons and neutrons, also posses a spin,
but this case is more complicated and won’t be discussed in detail. The
reader should just keep in mind that for each quantum particle, the
spin S is a fixed quantum number.

Table 1: Elementary particles and their spin.

Fermions BosonsQuarks Leptons
Particle: Spin: Particle: Spin: Particle: Spin:
Up 1/2 Electron 1/2 Gluon 1
Down 1/2 Muon 1/2 Photon 1
Charm 1/2 Tau 1/2 Z Boson 1
Strange 1/2 Electron Neutrino 1/2 W Boson 1
Top 1/2 Muon Neutrino 1/2 Higgs Boson 0
Bottom 1/2 Tau Neutrino 1/2

The spin algebra

For a quantum particle with spin S, there is a Hilbert space C2S+1

associated with that particle. Each vector from this space represents
a spin state of that particle, and we can introduce spin operators de-
fined on that space. The algebra of these operators is governed by the
following commutation relations, which are defined in analogy to the
commutation relations of orbital angular momentum:

[S1, S2] = iS3, [S2, S3] = iS1, [S3, S1] = iS2. (1)

In this paper, we will work with units such that ℏ = 1. The Hilbert
space C2S+1 is spanned by normalized, basis vectors denoted by

|S,m⟩, m ∈ {−S,−S + 1, ..., S− 1, S}. (2)
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The number m is sometimes called a projection of a spin onto z-axis
or z-component. For example, in the case of an electron, S = 1

2
, the

Hilbert space is C2 and we have two basis vectors: |1
2
,−1

2
⟩ and |1

2
, 1
2
⟩,

which are often denoted as | ↑⟩, and | ↓⟩ respectively, and called "up"
and "down". These vectors can be identified with the standard basis
vectors of C2, so that | ↑⟩ = [1, 0] and | ↓⟩ = [0, 1].

Let us go back to the general case. In analogy to the theory of orbital
angular momentum, we have

S3|S,m⟩ = m|S,m⟩, (3)

and hence

S3|S, S⟩ = S|S, S⟩, S3|S,−S⟩ = −S|S,−S⟩. (4)

We also introduce the so called "raising" (+) and "lowering" (−) op-
erators:

S± = S1 ± iS2. (5)

These operators act on states |S,m⟩ in the following way:

S±|S,m⟩ =
√

S(S + 1)−m(m± 1)|S,m± 1⟩, (6)

so that the number m in |S,m⟩ is increased by 1 or decreased by 1,
hence the name of operators. In particular, the following property will
be of great relevance for us:

S−|S,−S⟩ = 0, (7)

which simply means that the "lowest" possible state cannot be low-
ered without returning zero. Analogously, the "highest" possible state
cannot be increased:

S+|S, S⟩ = 0.

Using (1), one can prove the following, very important properties of
rising and lowering operators, which will later be used frequently:

[S−, S+] = −2S3, [S3, S±] = ±S±. (8)

Example: spin 1
2

For the easiest non-trivial case, S = 1
2

(for example, an electron), the
Hilbert space is, as mentioned above, C2 and we have two basic states:
| ↑⟩ = [1, 0], | ↓⟩ = [0, 1]. Moreover, the spin operators S1, S2, S3 are
just Pauli matrices σ1, σ2, σ3 multiplied by 1

2
(ℏ = 1), so that
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S1 =
1

2
σ1 =

1

2

[
0 1
1 0

]
, S2 =

1

2
σ2 =

1

2

[
0 −i
i 0

]
, S3 =

1

2
σ3 =

1

2

[
1 0
0 −1

]
.

It follows that:

S− =

[
0 0
1 0

]
, S+ =

[
0 1
0 0

]
,

and one can check easily that properties (1) - (8) hold for the above
operators and states.

Representations and spins

All the facts we given in the previous section can be viewed as a
direct result of representation theory of Lie groups and Lie algebras.
The reader which is not familiar with these concepts is free to skip this
entire section.

The real Lie algebra of a group SU(2) is denoted by su(2). It is the
real vector space of 2 × 2, anti-hermitian matrices of trace zero. Its
complexification

slC(2) = su(2) + isu(2)

is a complex vector space of 2 × 2, complex matrices with trace zero.
This space is three-dimensional, and its basis vectors are the following
matrices:

T =
1

2

(
1 0
0 −1

)
, T+ =

(
0 1
0 0

)
, T− =

(
0 0
1 0

)
.

Definition 1 Let g be a finite-dimensional Lie algebra, V a finite-
dimensional vector space and gl(V ) be the space of all linear operators
from V to itself. Any linear map

ρ : g → gl(V )

which preserves the commutator:

ρ([g1, g2]) = [ρ(g1), ρ(g2)]

is called a (finite-dimensional) representation of g on V . We say
that it is irreducible when the smallest non-zero subspace which is
left invariant by all operators of the form ρ(g), g ∈ g, is V itself.
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We have the following [1]:

Theorem 1 Every finite-dimensional, irreducible representation of slC(2)
is unitarily equivalent to (ρ(n), V (n)), where the dimension of a complex
vector space V (n) is n+ 1 and, for a basis {vi}nj=0 of V (n), we have

ρ(n)(T )vj =
(
j − n

2

)
vj,

ρ(n)(T+)vj = vj+1,

ρ(n)(T−)vj = j(n− j + 1)vj−1,

with v−1 = vn+1 = 0.

We now fix S ∈ N
2
∪ {0} and consider (ρ(2S), V (2S)), where we define

S+ = ρ(2S)(T+),

S− = ρ(2S)(T−),

S3 = ρ(2S)(T ).

If, in addition, we define a vector (or state) by the following rescaling:

|S,m⟩ = (−1)S+m

√
(S−m)!

(S +m)!
vS+m, m = −S,−S + 1, ..., S− 1, S,

then one can easily show that

S3|S,m⟩ = m|S,m⟩,
S±|S,m⟩ =

√
S(S + 1)−m(m± 1)|S,m± 1⟩,

which coincide with (3) and (6).

Spin waves

In this section, we establish the notation and basic concepts of many-
particle spin systems. We introduce the concept of spin waves and show
that one-spin wave states are eigenstates of a Heisenberg Hamiltonian.
We also prove that n-spin wave states are not eigenstates, but they
provide a good approximation of true eigenstates in termodynamic
limit.

Introduction to spin waves

From now on, we will consider many-body spin systems on a finite, d-
dimensional lattice Λ = {1, ..., N}d ⊂ Zd. For a fixed spin S ∈ N

2
∪{0},
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we associate with each site x ∈ Λ a Hilbert space C2S+1. Figure 1 shows
an example of one-dimensional spin system with S = 1

2
and N = 6,

and Figure 2 presents a two-dimensional example.

The Hilbert space of the general, many-body system is thus:

H =
⊗
x∈Λ

C2S+1, (9)

where we also assume periodic boundary conditions. Periodic bound-
ary conditions can be intuitively considered as "the last particle is a
neighbour of the first", see Figure 3, where this imaginary picture is
displayed for one dimensional spin system.

Figure 1: Example of a one-dimensional system for S = 1
2

and N = 6.

Figure 2: Example of a two-dimensional system for S = 1
2

and N = 9.

Figure 3: Example of a one-dimensional system with periodic boundary
conditions for S = 1

2
and N = 6.
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Since Λ is a finite set, it’s elements can be ordered, and, for given
x ∈ Λ, we can define operators

Sα
x = 1⊗ · · · ⊗ 1⊗ Sα ⊗ 1⊗ · · ·1, (Nd terms). (10)

with α being 1, 2, 3, + or −, and Sα acting exactly on site x, without
affecting other sites. We define the Heisenberg Hamiltonian acting on
H via

HΛ =
∑

<x,y>⊂Λ

(
S2 − Sx · Sy

)
=

∑
<x,y>⊂Λ

(
S2 − (S1

xS
1
y + S2

xS
2
y + S3

xS
3
y)
)
.

(11)

In the above, Sx = [S1
x, S

2
x, S

3
x] and <x,y> is an unordered pair of

nearest neighbours, and the summation in (11) is taken over all such
pairs, counting each pair only once.

Due to the "−" sign in front of the term Sx · Sy, Hamiltonian HΛ

describes ferromagnets: the lowest possible energy can be obtained by
states where all spins are parallel, with m being either S or −S, that
is, by states of the form ⊗

x∈Λ

|S,−S⟩,⊗
x∈Λ

|S, S⟩.
(12)

In addition, Hamiltonian HΛ is normalized, by adding the constant S2,
so that the lowest possible energy is 0.

According to (10), we see that operators of this form commute if
sites on which they act do not coincide, that is

[Sα1
x , Sα2

y ] = 0, (13)

where α1, α2 ∈ {1, 2, 3, ” + ”, ” − ”}, provided that x ̸= y. Note that
this holds when x and y are nearest neighbours. It turns out that, in
general case, expressions (8) need to be modified to take into account
lattice sites which operators act on:

[S−
x , S

+
y ] = −2δx,yS

3
x,

[S3
x, S

±
y ] = ±δx,yS

±
x ,

(14)
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For fixed x ∈ Λ, we still have

S+
x = S1

x + iS2
x

S−
x = S1

x − iS2
x

(15)

and thus

S1
x =

1

2
(S+

x + S−
x )

S2
x =

1

2i
(S+

x − S−
x )

(16)

We can see that, for x and y being nearest neighbours:

S1
xS

1
y + S2

xS
2
y =

1

4
(S+

x S
+
y + S+

x S
−
y + S+

y S
−
x + S−

x S
−
y )

− 1

4
(S+

x S
+
y − S+

x S
−
y − S+

y S
−
x + S−

x S
−
y )

=
1

2
(S+

x S
−
y + S+

y S
−
x ).

Plugging this result into (11), we obtain an expression of HΛ which is
easier to work with:

HΛ =
∑

<x,y>⊂Λ

(
S2 − 1

2
(S+

x S
−
y + S+

y S
−
x )− S3

xS
3
y

)
. (17)

Consider the first state in (12), namely

Ω =
⊗
x∈Λ

|S,−S⟩. (18)

Clearly, for each x ∈ Λ, we have

S−
x Ω = 0,

S3
xΩ = −SΩ,

(19)

and hence we see that HΛΩ = 0, so Ω is indeed a state of the lowest
possible energy, or, in other words, a ground state of HΛ. Similarly,
the second state in (12) is also a ground state. However, it turns out
that these are not the only possibilities:

Theorem 2 For n ∈ {0, 1, ..., 2S|Λ|}, (S+)
nΩ is a ground state of the

Hamiltonian HΛ (17), that is, HΛ(S+)
nΩ = 0, where

S+ =
∑
x∈Λ

S+
x ,

and where we put (S+)
0 = 1H.
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Proof. We have already seen that theorem is true for n = 0. To prove
the result for n > 0, let us calculate the following commutator:

[HΛ, S+] =
∑

<x,y>⊂Λ

∑
z∈Λ

[
S2 − 1

2
(S+

x S
−
y + S+

y S
−
x )− S3

xS
3
y, S

+
z

]
=

∑
<x,y>⊂Λ

∑
z∈Λ

(
−1

2
[S+

x S
−
y , S

+
z ]−

1

2
[S+

y S
−
x , S

+
z ]− [S3

xS
3
y, S

+
z ]

)
,

(20)

where

[S+
x S

−
y , S

+
z ] = S+

x S
−
y S

+
z − S+

z S
+
x S

−
y = S+

x

(
S+
z S

−
y − 2δy,zS

3
z

)
− S+

z S
+
x S

−
y

= −2δy,zS
+
x S

3
z ,

(21)

similarly to the above:

[S+
y S

−
x , S

+
z ] = −2δx,zS

+
y S

3
z , (22)

and finally:

[S3
xS

3
y, S

+
z ] = S3

xS
3
yS

+
z − S+

z S
3
xS

3
y = S3

x

(
S+
z S

3
y + δy,zS

+
z

)
− S+

z S
3
xS

3
y

= S3
xS

+
z S

3
y + δy,zS

3
xS

+
z − S+

z S
3
xS

3
y

=
(
S+
z S

3
x + δx,zS

+
z

)
S3
y + δy,zS

3
xS

+
z − S+

z S
3
xS

3
y

= S+
z S

3
xS

3
y + δx,zS

+
z S

3
y + δy,zS

3
xS

+
z − S+

z S
3
xS

3
y

= δx,zS
+
z S

3
y + δy,zS

3
xS

+
z .

Note that, in our case, δy,zS3
xS

+
z = δy,zS

+
z S

3
x, since the only possibility

for this term to be non-zero is when z = y, but then z ̸= x because x
and y are nearest neighbours. Thus, we can write:

[S3
xS

3
y, S

+
z ] = S3

xS
3
yS

+
z − S+

z S
3
xS

3
y = δx,zS

+
z S

3
y + δy,zS

+
z S

3
x (23)

Plugging these results into (20), we obtain:

[HΛ, S+] =
∑

<x,y>⊂Λ

∑
z∈Λ

(
δy,zS

+
x S

3
z + δx,zS

+
y S

3
z − δx,zS

+
z S

3
y − δy,zS

+
z S

3
x

)
=

∑
<x,y>⊂Λ

(
S+
x S

3
y + S+

y S
3
x − S+

x S
3
y − S+

y S
3
x

)
= 0

(24)

It means that, for any power n > 0, we have

HΛ(S+)
nΩ = (S+)

nHΛΩ = 0.
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However, for n > 2S|Λ| we trivially have (S+)
nΩ = 0, because on each

site x ∈ Λ we can act with S+
x at most 2S times to obtain non-zero

result, and we have |Λ| sites in total.

□

Let us introduce the operator

S+
(k) =

1√
2S|Λ|

∑
x∈Λ

eik·xS+
x ,

and a state
|1k⟩ = S+

(k)Ω =
1√
2S|Λ|

∑
x∈Λ

eik·xS+
x Ω, (25)

where k ∈ 2π
N
Zd. Simple calculation shows that states of the form (25)

are orthonormal in the sense that ⟨1k|1k⟩ = δk,p:

⟨1p|1k⟩ =

〈
1√
2S|Λ|

∑
y∈Λ

eip·yS+
y Ω

∣∣∣∣ 1√
2S|Λ|

∑
x∈Λ

eik·xS+
x Ω

〉

=
1

2S|Λ|
∑
y,x∈Λ

ei(k·x−p·y)⟨S+
y Ω|S+

x Ω⟩

=
1

2S|Λ|
∑
y,x∈Λ

ei(k·x−p·y)⟨Ω|S−
y S

+
x Ω⟩

=
1

2S|Λ|
∑
y,x∈Λ

ei(k·x−p·y)⟨Ω|(S+
x S

−
y − 2δx,yS

3
x)Ω⟩

= − 1

S|Λ|
∑
y,x∈Λ

ei(k·x−p·y)δx,y⟨Ω|S3
xΩ⟩

=
1

|Λ|
∑
x∈Λ

eix(k−p) = δk,p.

The states (25) are called spin wave states, or, more precisely, one-
spin wave states, and vector k ∈ 2π

N
Zd is called a momentum of a

spin wave state |1k⟩. It turns out that spin wave states are crucial in
spectral analysis of HΛ. Indeed, one of the most important theorems
in the theory of spin waves tells us that |1k⟩ is in fact an eigenvector
of Hamiltonian HΛ:

Theorem 3
HΛ|1k⟩ = Sϵk|1k⟩,

where

ϵk =
d∑

i=1

(
2− 2 cos (ki)

)
10



with ki being the i-th component of a momentum vector k.

In the following proof, we will use facts that are implied by the periodic
boundary conditions we assumed. Namely, for a function f which takes
two arguments x, y ∈ Λ, we can write

∑
<x,y>⊂Λ

f(x,y) =
∑
x∈Λ

d∑
i=1

f(x,x+ ei) (26)

where ei is a basis, unit vector in i-th direction, and, for a one-argument
function g: ∑

x∈Λ

g(x) =
∑
x∈Λ

g(x+ ei) (27)

for any i ∈ {1, ..., d}. The above formulas are just generalizations of
the one-dimensional case. For example, (26) in d = 1 takes the form

N∑
x=1

f(x, x+ 1),

and periodic boundary conditions provide that the last site is paired
with the first site.

Proof.√
2S|Λ|HΛS

+
(k)Ω =

∑
<x,y>⊂Λ

∑
z∈Λ

eik·z
(
S2S+

z − 1

2
S+
x S

−
y S

+
z − 1

2
S+
y S

−
x S

+
z − S3

xS
3
yS

+
z

)
Ω.

We need to rewrite each term in the bracket using (21)(22) and (23):

S+
x S

−
y S

+
z = S+

z S
+
x S

−
y − 2δy,zS

+
x S

3
z

S+
y S

−
x S

+
z = S+

z S
+
y S

−
x − 2δx,zS

+
y S

3
z

and
S3
xS

3
yS

+
z = S+

z S
3
xS

3
y + δx,zS

+
z S

3
y + δy,zS

+
z S

3
x.
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Now, using these results:√
2S|Λ|HΛS

+
(k)Ω =

∑
<x,y>⊂Λ

∑
z∈Λ

eik·z
(
S2S+

z − 1

2

(
S+
z S

+
x S

−
y − 2δy,zS

+
x S

3
z

)
− 1

2

(
S+
z S

+
y S

−
x − 2δx,zS

+
y S

3
z

)
−
(
S+
z S

3
xS

3
y + δx,zS

+
z S

3
y + δy,zS

+
z S

3
x

))
Ω

=
∑

<x,y>⊂Λ

∑
z∈Λ

eik·z
(
S2S+

z + δy,zS
+
x S

3
z + δx,zS

+
y S

3
z

− S+
z S

3
xS

3
y − δx,zS

+
z S

3
y − δy,zS

+
z S

3
x

)
Ω

=
∑

<x,y>⊂Λ

∑
z∈Λ

eik·z
(
δy,zS

+
x S

3
z + δx,zS

+
y S

3
z − δx,zS

+
z S

3
y − δy,zS

+
z S

3
x

)
Ω

= −S
∑

<x,y>⊂Λ

∑
z∈Λ

eik·z
(
δy,zS

+
x + δx,zS

+
y − δx,zS

+
z − δy,zS

+
z

)
Ω

= −S
∑

<x,y>⊂Λ

(
eik·yS+

x + eik·xS+
y − eik·xS+

x − eik·yS+
y

)
Ω

(26)
= −S

∑
x∈Λ

d∑
i=1

(
eik·(x+ei)S+

x + eik·xS+
x+ei

− eik·xS+
x − eik·(x+ei)S+

x+ei

)
Ω

(27)
= −S

∑
x∈Λ

d∑
i=1

(
eik·(x+ei)S+

x + eik·(x−ei)S+
x − eik·xS+

x − eik·xS+
x

)
Ω

= −S
d∑

i=1

(
eik

i

+ e−iki − 2

)∑
x∈Λ

eik·xS+
x Ω

= S
d∑

i=1

(
2− 2 cos (ki)

)√
2S|Λ|S+

(k)Ω = Sϵk
√

2S|Λ|S+
(k)Ω.

The desired result is obtained simply by multiplying both sides of
the above by the normalization factor 1/

√
2S|Λ|.

□

Note that, since

cos(x) ≈ 1− x2

2

for x small, and each component of momentum k ∈ 2π
N
Zd is small for

N sufficiently large, we can see that for such k:

ϵk ≈
d∑

i=1

(ki)2 = k2,
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which is the kinetic energy for a free particle with momentum k. Thus,
for k small, an excitation of a form of a spin wave with momentum k
can be viewed as appearance of a free quasi-particle called magnon.

Let us now turn our attention to the states of the form

S+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω, (28)

Looking at the structure of the above, one would hope that this state
is an eigenstate of HΛ with its energy being simply S(ϵkn + ... + ϵk1).
States of this form are essentially a collective excitations of many non-
interacting spin waves and are called n-spin wave states. Unfortu-
nately, these states are in general no longer eigenstantes of HΛ, as we
shall see in a moment. The problem is that these states are "almost"
eigenstates with expected energy S(ϵkn + ...+ ϵk1), but the remainder
appears in eigenequation which in general is non-zero. However, these
states can be considered as good approximations of the true eigen-
states of HΛ for small momenta, and thus can be used to investigate
the spectral properties of HΛ for low energies. Hence, the approximate
description of the low-temperature behaviour of the system in thermo-
dynamic limit may indeed be possible [3][4][5].

Main theorem

Our next goal is to prove the following, crucial theorem:

Theorem 4 For a general state of the form S+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω,
ki ∈ 2π

N
Zd ∀i ∈ {1, ..., n}, n > 1, we have

HΛS
+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω = S

( n∑
i=1

ϵ(ki)

)
S+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω

+
n∑

i,j=1
i>j

R
′

ki,kj
S+
(kn)

S+
(kn−1)

· · · Ŝ+
(ki)

· · · Ŝ+
(kj)

· · · S+
(k1)

Ω,
(29)

where the hat over an operator means that this particular operator is
missing in the product of operators, and

R
′

k,q =
1

2S|Λ|
∑

<x,y>⊂Λ

S+
x S

+
y Cx,y;k,q,

Cx,y;k,q = eiq·yeik·y + eiq·xeik·x − eiq·yeik·x − eiq·xeik·y.

(30)
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Proof. Let’s start by calculating the remainder Rk defined via

Rk = [HΛ, S
+
(k)]. (31)

This calculation is similar to (20). The only difference is the appearance
of 1/

√
2S|Λ| and eik·z factor after the sum over z, so we can directly

use (24) and write

Rk =
1√
2S|Λ|

∑
<x,y>⊂Λ

∑
z∈Λ

eik·z
(
δy,zS

+
x S

3
z + δx,zS

+
y S

3
z − δx,zS

+
z S

3
y − δy,zS

+
z S

3
x

)
=

1√
2S|Λ|

∑
<x,y>⊂Λ

(
eik·yS+

x S
3
y + eik·xS+

y S
3
x − eik·xS+

x S
3
y − eik·yS+

y S
3
x

)
.

The rest Rk acts on Ω as follows:

RkΩ =
1√
2S|Λ|

∑
<x,y>⊂Λ

(
eik·yS+

x S
3
y + eik·xS+

y S
3
x − eik·xS+

x S
3
y − eik·yS+

y S
3
x

)
Ω

= − 1√
2S|Λ|

S
∑

<x,y>⊂Λ

(
eik·yS+

x + eik·xS+
y − eik·xS+

x − eik·yS+
y

)
Ω

(26)
= − 1√

2S|Λ|
S
∑
x∈Λ

d∑
i=1

(
eik·(x+ei)S+

x + eik·xS+
x+ei

− eik·xS+
x − eik·(x+ei)S+

x+ei

)
Ω

(27)
= − 1√

2S|Λ|
S
∑
x∈Λ

d∑
i=1

(
eik·(x+ei)S+

x + eik·(x−ei)S+
x − eik·xS+

x − eik·xS+
x

)
Ω

= −S
d∑

i=1

(
eik

i

+ e−iki − 2

)
1√
2S|Λ|

∑
x∈Λ

eik·xS+
x Ω

= S
d∑

i=1

(
2− 2 cos (ki)

)
S+
(k)Ω,

and we see that
RkΩ = SϵkS

+
k Ω.

Basically, (31) tells us that we can commute HΛ with S+
k but the

remainder Rk would appear so that:

HΛS
+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω = (S+
(kn)

HΛ +Rkn)S
+
(kn−1)

· · · S+
(k1)

Ω

= S+
(kn)

HΛS
+
(kn−1)

· · · S+
(k1)

Ω +RknS
+
(kn−1)

· · · S+
(k1)

Ω.

Our goal is to move HΛ and Rkn so that they act directly on Ω (recall
that HΛΩ = 0 and RkΩ = SϵkS

+
k Ω). To do the next step of commuting

operators in this way, it is clear that we need to calculate commutator
of the form [Rk, S

+
q ].
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We introduce

R
′

k,q := [Rk, S
+
q ]

=
1

2S|Λ|
∑

<x,y>⊂Λ

∑
z∈Λ

eiq·z
[
eik·yS+

x S
3
y + eik·xS+

y S
3
x − eik·xS+

x S
3
y − eik·yS+

y S
3
x, S

+
z

]
=

1

2S|Λ|
∑

<x,y>⊂Λ

∑
z∈Λ

eiq·z
(
eik·y[S+

x S
3
y, S

+
z ] + eik·x[S+

y S
3
x, S

+
z ]

− eik·x[S+
x S

3
y, S

+
z ]− eik·y[S+

y S
3
x, S

+
z ]

)
.

We see that the following commutator needs to be evaluated:

[S+
x S

3
y, S

+
z ] = S+

x S
3
yS

+
z − S+

z S
+
x S

3
y = S+

x (S
+
z S

3
y + δy,zS

+
z )− S+

z S
+
x S

3
y

= δy,zS
+
x S

+
z ,

and, simply by exchanging x and y in the above,

[S+
y S

3
x, S

+
z ] = δx,zS

+
y S

+
z .

Thus:

R
′

k,q =
1

2S|Λ|
∑

<x,y>⊂Λ

∑
z∈Λ

eiq·z
(
eik·yδy,zS

+
x S

+
z + eik·xδx,zS

+
y S

+
z

− eik·xδy,zS
+
x S

+
z − eik·yδx,zS

+
y S

+
z

)
=

1

2S|Λ|
∑

<x,y>⊂Λ

(
eiq·yeik·yS+

x S
+
y + eiq·xeik·xS+

y S
+
x − eiq·yeik·xS+

x S
+
y − eiq·xeik·yS+

y S
+
x

)
=

1

2S|Λ|
∑

<x,y>⊂Λ

S+
x S

+
y

(
eiq·yeik·y + eiq·xeik·x − eiq·yeik·x − eiq·xeik·y

)
=

1

2S|Λ|
∑

<x,y>⊂Λ

S+
x S

+
y Cx,y;k,q

with

Cx,y;k,q = eiq·yeik·y + eiq·xeik·x − eiq·yeik·x − eiq·xeik·y

Note that further commuting is trivial:

[R
′

k,q, S
+
(p)] =

1

2S|Λ|
1√
2S|Λ|

∑
<x,y>⊂Λ

Cx,y;k,q

∑
z∈Λ

eip·z[S+
x S

+
y , S

+
z ] = 0.
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Before proving (29), we need to show that

RknS
+
(kn−1)

· · · S+
(k1)

Ω = SϵknS
+
(kn)

· · · S+
(k1)

Ω

+
n−1∑
i=1

R
′

kn,ki
Ŝ+
(kn)

S+
(kn−1)

· · · Ŝ+
(ki)

· · · S+
(k1)

Ω,

(32)

Indeed, the above rule holds for n = 2:

Rk2S
+
(k1)

Ω = S+
(k1)

Rk2Ω +R
′

k2,k1
Ω = Sϵk2S

+
(k2)

S+
(k1)

Ω +R
′

k2,k1
Ω.

Assume now that (32) holds for fixed n > 1. We have:

Rkn+1S
+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω = (S+
(kn)

Rkn+1 +R
′

kn+1,kn
)S+

(kn−1)
· · · S+

(k1)
Ω

= S+
(kn)

(
Rkn+1S

+
(kn−1)

· · · S+
(k1)

Ω
)
+R

′

kn+1,kn
S+
(kn−1)

· · · S+
(k1)

Ω

= S+
(kn)

(
Sϵkn+1S

+
(kn+1)

S+
(kn−1)

· · · S+
(k1)

Ω +
n−1∑
i=1

R
′

kn+1,ki
Ŝ+
(kn+1)

S+
(kn−1)

· · · Ŝ+
(ki)

· · · S+
(k1)

Ω
)

+R
′

kn+1,kn
S+
(kn−1)

· · · S+
(k1)

Ω

= Sϵkn+1S
+
(kn+1)

S+
(kn)

· · · S+
(k1)

Ω +
n−1∑
i=1

R
′

kn+1,ki
Ŝ+
(kn+1)

S+
(kn)

· · · Ŝ+
(ki)

· · · S+
(k1)

Ω

+R
′

kn+1,kn
Ŝ+
(kn+1)

Ŝ+
(kn)

S+
(kn−1)

· · · S+
(k1)

Ω

= Sϵkn+1S
+
(kn+1)

S+
(kn)

· · · S+
(k1)

Ω +
n∑

i=1

R
′

kn+1,ki
Ŝ+
(kn+1)

S+
(kn)

· · · Ŝ+
(ki)

· · · S+
(k1)

Ω,

hence, by induction, (32) holds for all natural n > 1. With this, we can
now proceed to prove (29), again by induction. It holds for n = 2:

HΛS
+
(k2)

S+
(k1)

Ω =
(
S+
(k2)

HΛ +Rk2

)
S+
(k1)

Ω

= S+
(k2)

HΛS
+
(k1)

Ω +Rk2S
+
(k1)

Ω

= S+
(k2)

(
S+
(k1)

HΛ +Rk1

)
Ω +

(
S+
(k1)

Rk2 +R
′

k2,k2

)
Ω

= Sϵk1S
+
(k2)

S+
(k1)

Ω + Sϵk2S
+
(k2)

S+
(k1)

Ω +R
′

k2,k2
Ω

= S
(
ϵk1 + ϵk2

)
S+
(k2)

S+
(k1)

Ω +R
′

k2,k2
Ω

Assume now that (29) holds for fixed n > 1. Using (32), we can
show that it holds for n+ 1:
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HΛS
+
(kn+1)

S+
(kn)

· · · S+
(k1)

Ω =
(
S+
(kn+1)

HΛ +Rkn+1

)
S+
(kn)

· · · S+
(k1)

Ω

= S+
(kn+1)

(
HΛS

+
(kn)

· · · S+
(k1)

Ω
)
+
(
Rkn+1S

+
(kn)

· · · S+
(k1)

Ω
)

= S+
(kn+1)

(
S

( n∑
i=1

ϵki

)
S+
(kn)

· · · S+
(k1)

Ω

+
n∑

i,j=1
i>j

R
′

ki,kj
S+
(kn)

S+
(kn−1)

· · · Ŝ+
(ki)

· · · Ŝ+
(kj)

· · · S+
(k1)

Ω

)

+
(
Rkn+1S

+
(kn)

· · · S+
(k1)

Ω
)

= S

( n∑
i=1

ϵki

)
S+
(kn+1)

S+
(kn)

· · · S+
(k1)

Ω

+
n∑

i,j=1
i>j

R
′

ki,kj
S+
(kn+1)

S+
(kn)

S+
(kn−1)

· · · Ŝ+
(ki)

· · · Ŝ+
(kj)

· · · S+
(k1)

Ω

+ Sϵkn+1S
+
(kn+1)

S+
(kn)

· · · S+
(k1)

Ω

+
n∑

j=1

R
′

kn+1,kj
Ŝ+
(kn+1)

· · · Ŝ+
(kj)

· · · S+
(k1)

Ω

= S

(n+1∑
i=1

ϵki

)
S+
(kn+1)

S+
(kn)

· · · S+
(k1)

Ω

+
n+1∑
i,j=1
i>j

R
′

ki,kj
S+
(kn+1)

S+
(kn)

· · · Ŝ+
(ki)

· · · Ŝ+
(kj)

· · · S+
(k1)

Ω.

Thus, reasoning by induction shows that (29) holds for all n > 1. This
ends the proof.

□

Final considerations

Let us briefly come back to the constant Cx,y;k,q in (30). Note that

Cx,y;k,q =
(
eiq·y − eiq·x

)(
eik·y − eik·x

)
. (33)

Since k,q ∈ 2π
N
Zd, we can choose k and q small for big N , in the sense

that |k|, |q| ∼ 1
N

. If it is so, then we can approximate exponents in
(33) up to linear terms and find that

|Cx,y;k,q| ≈ |(q · (y − x))(k · (y − x))| ≤ |q||y − x||k||y − x| ∼ 1

N2
,
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for x and y are nearest neighbours in (30), so |y − x| = 1. Addition-
ally, the number of terms in sum in (30) is dNd, so that R

′

k,q is of
order dN−2. Assuming that all momenta in (29) are small in the sense
described above, and taking into account a factor of order N− d

2 com-
ing from every spin-wave operator in (29) (there are n − 2 of them),
we see that the second sum in (29) (the one including R

′s) is of or-
der C(n)dN−2− d(n−2)

2 , where C(n) is a function depending only on the
number of momenta n ≥ 2. It turns out that this problematic term
can be made arbitrarily small just by increasing the particle number.

The above discussion is of course by no means rigorous, but it
presents the intuition lying behind the idea that, for small momenta,
n-spin wave states are indeed good approximation of true eigenstates
of the Heisenberg Hamiltonian in thermodynamic limit.

One can also analyze the problem in terms of energy expectations.
Consider, for example, a two-spin wave state S+

(k2)
S+
(k1)

Ω, where ki =
2π
N
ni for i ∈ {1, 2} with ni ∈ Zd fixed. In what follows, we skip the

details of calculations, since they are tedious and long, but all methods
used to deliver these results where presented throughout this work and
are known to the reader. Let us calculate the energy expectation of
state S+

(k2)
S+
(k1)

Ω:

⟨S+
(k2)

S+
(k1)

Ω|HΛS
+
(k2)

S+
(k1)

Ω⟩ = S(ϵk2 + ϵk1)⟨S+
(k2)

S+
(k1)

Ω|S+
(k2)

S+
(k1)

Ω⟩

+ ⟨S+
(k2)

S+
(k1)

Ω|R′

k2,k1
Ω⟩.

(34)

In the above,

⟨S+
(k2)

S+
(k1)

Ω|S+
(k2)

S+
(k1)

Ω⟩ = 1

4S2|Λ|2
∑

x,y,z,t∈Λ

e−ik2·xe−ik1·yeik2·zeik1·y⟨S+
x S

+
y Ω|S+

z S
+
t Ω⟩

(35)

and

⟨S+
(k2)

S+
(k1)

Ω|R′

k2,k1
Ω⟩ = 1

4S2|Λ|2
∑
x,y∈Λ

<z,t>⊂Λ

e−ik2·xe−ik1·yCz,t;k2,k1⟨S+
x S

+
y Ω|S+

z S
+
t Ω⟩,

(36)

where

⟨S+
x S

+
y Ω|S+

z S
+
t Ω⟩ = 4S2(δx,tδy,z + δx,zδy,t)− 4Sδx,zδx,yδx,t. (37)
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Plugging this into (35) and (36), we obtain

⟨S+
(k2)

S+
(k1)

Ω|S+
(k2)

S+
(k1)

Ω⟩ = 1 + δk2,k1 −
1

S|Λ|
and

⟨S+
(k2)

S+
(k1)

Ω|R′

k2,k1
Ω⟩ = 2

|Λ|2
∑
t∈Λ

d∑
i=1

(
cos(ki

2) + cos(ki
1)− cos(ki

2 − ki
1)− 1

)
.

With this, we conclude that, if k1 ̸= k2:

⟨S+
(k2)

S+
(k1)

Ω|HΛS
+
(k2)

S+
(k1)

Ω⟩ = S(ϵk2 + ϵk1)(1−
1

S|Λ|
)

+
2

|Λ|2
∑
t∈Λ

d∑
i=1

(
cos(ki

2) + cos(ki
1)− cos(ki

2 − ki
1)− 1

)
,

and, because∣∣∣∣ 2

|Λ|2
∑
t∈Λ

d∑
i=1

(
cos(ki

2) + cos(ki
1)− cos(ki

2 − ki
1)− 1

)∣∣∣∣ ≤ 8d

|Λ|
−−−−→
|Λ|→∞

0,

we see that

⟨S+
(k2)

S+
(k1)

Ω|HΛS
+
(k2)

S+
(k1)

Ω⟩ −−−−→
|Λ|→∞

S(ϵk2 + ϵk1). (38)

Of course, the limit |Λ| → ∞ means that we increase the particle
number N so that N → ∞ (because |Λ| = Nd), but then also k1,k2 →
0. Thus, (38) can be understood in a way that the energy of two-spin
wave state is essencially a sum of energies of one-spin wave states in
thermodynamic limit and when momenta are small.
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